点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:永盈彩票官网网址_用户注册 | 官网首页登录平台网址
首页>文化频道>要闻>正文

永盈彩票官网网址_用户注册 | 官网首页登录平台网址

来源:永盈彩票客户端下载2024-06-11 17:48

  

【地评线】京彩好评:推进国家公园建设 为美丽中国赋能添彩******

  近日,国家林草局、财政部、自然资源部、生态环境部联合印发《国家公园空间布局方案》,遴选出49个国家公园候选区(含正式设立的5个国家公园),确定了国家公园建设的发展目标、空间布局、创建设立、主要任务和实施保障等内容。

  建立以国家公园为主体的自然保护地体系,是我国推进自然生态保护、建设美丽中国、促进人与自然和谐共生的一项重要举措。继2017年9月份我国发布《建立国家公园体制总体方案》后,到去年10月12日,我国宣布正式设立5处国家公园,再到此次遴选出49个国家公园候选区(含正式设立的5个国家公园),不仅将加快建立以国家公园为主体的自然保护地体系,也为建设美丽中国、实现中华民族永续发展提供生态支撑。尤其是《国家公园空间布局方案》不仅覆盖了森林、草原、湿地、荒漠等自然生态系统,以及自然景观、自然遗产、生物多样性等最富集区域,而且共涉及28个省份现有自然保护地700多个,10项世界自然遗产、2项世界文化和自然双遗产、19处世界人与生物圈保护区;分布着5000多种野生脊椎动物和2.9万多种高等植物,保护了80%以上的国家重点保护野生动植物物种及其栖息地。正如行业内专家分析所说,相比数量规模,国家公园的主体地位和功能作用,更主要的是体现在质量和价值上。因为国家公园之“公”,是国家所有、全民共享、世代传承。

  绿水青山就是金山银山。党的二十大报告提出,要“推进以国家公园为主体的自然保护地体系建设”。当前及今后一段时期,各地要抓紧抓好国家公园建设,为建设生态文明和美丽中国作出更大贡献。

  加强宣传,充分认识国家公园建设重要意义。建设国家公园是全面贯彻新发展理念、落实美丽中国愿景的重要举措,也是真正实现生态产品的价值转换,使“绿水青山”转化为“金山银山”生动实践。尤其是作为我国自然生态系统中最重要、自然景观最独特、自然遗产最精华、生物多样性最富集的部分,国家公园的保护范围大,生态过程完整,具有全球价值、国家象征,国民认同度高。可以说,高质量建设国家公园对于推动生态环境治理体系和治理能力现代化具有举足轻重的战略意义。同时,国家公园代表着国家形象,象征着国家精神,彰显着国家文化,是世界认识中国的一张“金名片”,是中国和世界进行文化交流的最佳载体,是全人类共同的文化财富。各地要注重以新发展理念为指引,不断提升社会大众共同参与建设国家公园体系的自觉性和主动性,通过特许经营、志愿服务、生态管护公益岗位等形式吸纳原住居民、社会公众,直接加入国家公园的保护建设管理中,在共享国家公园带来的生态福祉的同时,努力打造具有国际影响力的“中国样本”。

  多措并举,高质量推进国家公园建设。国家公园的首要功能是重要自然生态系统的原真性、完整性保护,同时兼具科研、教育、游憩等综合功能。而高质量建设国家公园,对维持全球生态系统稳定,保护全球生物多样性,为人类提供优质的生态产品和生态服务,给人类生存发展留下珍贵的自然资产,是中国推动全球生态环境治理、优化国家生态安全格局、构建人类命运共同体的一项重要举措。我国建立起了数量众多、类型丰富、功能多样的各级各类自然保护地,基本覆盖了我国绝大多数重要的自然生态系统和自然遗产资源,但与广大群众对生态文明的期盼还有差距,尤其是重叠设置、多头管理、边界不清、权责不明、保护与发展矛盾突出等体制机制方面的问题还不同程度存在。因此,我们应以国家公园建设为抓手,多措并举地进一步理顺管理体制,努力构建政府、企业、社会组织和公众共同参与国家公园保护、治理、管理的长效机制,努力为子孙后代留下更多更珍贵的自然资产,也为美丽中国赋能添彩。

  行者方致远,奋斗路正长。国家公园体系建设是一项长期而又艰巨的任务,美丽中国建设更是一场没有终点的“赛跑”,唯有真抓实干、久久为功,方能让美丽中国风景如画。更何况良好生态环境又是最公平的公共产品,是最普惠的民生福祉。通过推进国家公园建设,不断为美丽中国赋能添彩,在构建人类命运共同体进程中继续展示中国作为、中国担当、中国力量。(刘纯银)

永盈彩票官网网址

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 邻邦扫描:俄军“特工沙皇”很神秘 俄6代战机或用氢燃料

  • 卡纳瓦罗宣布放弃中国男足主帅职位:无暇顾及家庭

独家策划

推荐阅读
永盈彩票下载app 草间弥生“进行时” 为上海“定制”
2024-06-29
永盈彩票官方 董其昌 何以影响三百年的中国书画史?
2024-08-14
永盈彩票技巧2022“中国非遗年度人物”推选宣传活动启动
2024-04-30
永盈彩票代理日侵台死伤两倍于甲午战争
2024-11-13
永盈彩票走势图又见“股神”巴菲特:中国投资人酒会火热报名中
2024-07-25
永盈彩票官方网站盘点上市公司董事长的另类故事:失联刑拘被夺权
2024-10-31
永盈彩票app妈妈孕期内化妆 会导致胎儿畸形吗?
2024-10-22
永盈彩票手机版回顾:平行志愿这样填不浪费分
2024-08-08
永盈彩票网投旗帜鲜明地支持马斯克:激光雷达三年内将被取代!
2024-04-19
永盈彩票app下载 Switch累计销量超3400万台
2024-10-17
永盈彩票骗局国安连胜创历史 比埃拉是客战恒大抢分的关键
2024-12-23
永盈彩票娱乐易宪容:三线城市房价如何走
2024-11-26
永盈彩票必赚方案李光斗:大火改变法国像911改变美国
2024-10-16
永盈彩票注册美国运动员夸完志愿者又为中国美食点赞:吃到了最好的中国菜
2024-05-26
永盈彩票开奖结果如何设置院校梯度才合理?
2024-09-28
永盈彩票平台打造办事不求人环境,多地开“办不成事”窗口
2024-03-23
永盈彩票APP曾被提到国家大典的高度 花滑为何被称为体育界颜值天花板?
2024-11-13
永盈彩票规则《全职高手之巅峰荣耀》首曝海报 电竞少年出征
2024-05-29
永盈彩票登录墨尔本维多利亚美术馆
2024-04-12
永盈彩票交流群“宿管猥亵学生”事发学校校长被免后再被纪委查
2024-07-10
永盈彩票登录韩国瑜谈“30日将会郭台铭”:见面一定很热情
2024-04-01
永盈彩票官网平台新华全媒+丨世界湿地日:如果湿地“精灵”会说话
2024-05-13
永盈彩票漏洞高娓娓:刘强东案,揭露“高管出国学习”的灰色..
2024-08-30
永盈彩票邀请码滴滴付强:成立司机服务部 将设两千名司机服务经理
2024-10-20
加载更多
永盈彩票地图